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0 | How to use and extend this manual

• If you refer to a ini-variable, always use the template:

\param{Module}{Variable} (e.g. \{StokesSphere}{Type}) or
\param{Variable} (e.g. \{MaxTime}) if the ini-variable does not belong to a

module

• Code:

\begin{code}
your code here

\end{code}

• Modules:

If you write a module manual, include all of the following in the appropriate sec-

tion in chapter 4:

\moduleName{Module name (class name)}{Headline}
\moduleBasicArgs{Field-Code (single character)}{In-Snap (Yes/No)}{Body-Force
(Yes/No)}{File name}
\moduleExtended{Description}{Depends on}{Variables used}{Provides (methods

that other modules can use)}{Howto (in what chains...)}{Initial commit (email /

date)}

1



1 | Introduction

The work on the Generic Automaton for planetary Interior Analysis started in 2006 in

Berlin at the German Aerospace Center (DLR), institute for planetary research. It is a

C++ code without dependencies. Please cite as:

Finite volume discretization for dynamic viscosities on Voronoi grids

Physics of the Earth and Planetary Interiors, Volume 171, Issues 14, December 2008,

Pages 137146

http://dx.doi.org/10.1016/j.pepi.2008.07.007

1.1 Purpose

The gaia code is a fluid flow solver for arbitrary geometries and its main purpose is

to calculate a flow field that fulfills the momentum and mass conservation equations.

Primarily this tool is used for Stokes-flow with strongly varying viscosity, a scenario often

arising in geophysics, especially to simulate mantle convection. During the last years

the equations were extended to support flows driven by inertia, enabling simulations

with a Mach number up to 0.2. The module system provides the user with the ability

to interact with the core functionality without having to manipulate crucial components

of the source code and provide a means to a simulation.

A summary about the core features:

• Navier-Stokes Solver for low Mach-number flow

• Compressible flow with ALA

• Supports Newtonian fluids (Strain Stress)

• (In)finite Prandtl / Reynolds number (MUSCL adv.)

• Co-located finite-volume discretization

• Arbitrary irregular grid support (must provide Voronoi information)

2



Chapter 1 Introduction 3

• Massively parallel, multiple solvers, library independent.

• Fully implicit with a choice of solvers

• Module system provides additional:

– Energy solvers

– Different rheologies (Arrhenius / Bingham / )

– Tracers for chemical convection

1.2 Installation and requirements

The source code complies with the Cxx98 standard and has no immediate dependencies

except for a C++ compiler. If you have access to the SVN repository, the following

steps might be helpful:

mkdir gaia

mkdir gaia/v2

mkdir gaia/grid

svn co https://svn.dlr.de/Gaia/GaiaS_svn/branches/v2/ gaia/v2/

svn co https://svn.dlr.de/Gaia/GaiaS_svn/grid gaia/grid/

The default version of make tries to compile the MPI version that requires an MPI-dev

package on your system. To compile the single-core version just run

make clean;make serial

Alternatively you can invoke the compiler directly with

<your favorite c++ compiler> -o GaiaS GaiaS.cpp

This will produce an executable that you can test with

./GaiaS -i GaiaS_blankenbach.ini

The MPI version requires an MPI package that can be installed on Ubuntu with:
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sudo apt-get install mpich2-devel

make clean;make

mpirun -n 4 ./GaiaP -i GaiaS_blankenbach.ini

Now the code runs with 4 threads on your local machine. Other make-targets include:

make cuda: creates GaiaC, solver runs on CUDA sm2.0 hardware

make petsc: creates GaiaS, uses the petsc library and enables the use of direct solvers.

No parallelism possible!

1.3 Coding Convention

Not all parts of the code obey these standards, nevertheless we should try to enforce

them for readability:

• Be descriptive. Comment your code.

• Method names in camelCaseMethod()

• Static method names in UpperCapsMethod()

• Variable names with under scores

1.4 Equations

The combination of momentum and mass conservation equation provide two funda-

mental variables, the velocity (flow field) and pressure. The fluid is assumed to be

incompressible, but with possible static variations of density. Furthermore the fluid is

supposed to have a linear stress-strain relation. The coupled equations solved by gaia

are:

1
Pr

(
∂v
∂t + v · ∇v

)
= −∇p+∇ ·

(
µ(∇v + (∇v)T )

)
+∇

(
−2µ

3 ∇ · v
)
+ f

∇ · (ρv) = 0

The user can provide viscosity, body force and boundary conditions through modules.

For numerical details please read:
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1.4.1 Derivation

Wikipedia:

==General form of the equations of motion==

The generic body force b seen previously is made specific first by breaking it up into

two new terms, one to describe forces resulting from stresses and one for ”other” forces

such as gravity. By examining the forces acting on a small cube in a fluid, it may be

shown that:

ρDv
Dt = ∇ · σ + f

where σ is the Cauchy stress tensor, and f accounts for other body forces present. This

equation is called the [[Cauchy momentum equation]] and describes the non-relativistic

momentum conservation of any continuum that conserves mass. σ is a rank two sym-

metric tensor given by its covariant components:

σij =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


where the σ are [[normal stress]]es and τ [[shear stress]]es. This tensor is split up into

two terms:

:σij =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 = −


π 0 0

0 π 0

0 0 π

+


σxx + π τxy τxz

τyx σyy + π τyz

τzx τzy σzz + π

 = −πI + T

where I is the 3 x 3 identity matrix and T is the deviatoric stress tensor. Note that the

[[pressure]] ”” is equal to minus the mean normal stress: Batchelor 2000—pp=141

:π = −1
3 (σxx + σyy + σzz) .

The motivation for doing this is that pressure is typically a variable of interest, and also

this simplifies application to specific fluid families later on since the rightmost tensor T
in the equation above must be zero for a fluid at rest. Note that T is [[traceless]]. The

NavierStokes equation may now be written in the most general form:

:ρDv
Dt = −∇π +∇ · T+ f

This equation is still incomplete. For completion, one must make hypotheses on the

forms of T and π, that is, one needs a constitutive law for the stress tensor which can

be obtained for specific fluid families and on the pressure; additionally, if the flow is

http://en.wikipedia.org/wiki/Derivation_of_the_Navier_Stokes_equations
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assumed compressible an equation of state will be required, which will likely further

require a conservation of energy formulation.

The formulation for Newtonian fluids stems from an observation made by Isaac Newton

that, for most fluids,

τ ∝ ∂u
∂y

In order to apply this to the NavierStokes equations, three assumptions were made by

Stokes:

* The stress tensor is a linear function of the strain rates.

* The fluid is isotropic.

* For a fluid at rest, ∇ · T must be zero (so that hydrostatic pressure results).

Applying these assumptions will lead to:

Tij = µ
(

∂ui
∂xj

+
∂uj

∂xi
− δij

2
3
∂uk
∂xk

)
That is, the deviatoric of the deformation rate tensor is identified to the deviatoric of

the stress tensor, up to a factor µ. δij is the Kronecker delta. µ and λ are proportion-

ality constants associated with the assumption that stress depends on strain linearly;

µ is called the first coefficient of viscosity (usually just called ”viscosity”) and λ is the

second coefficient of viscosity (related to bulk viscosity). The value of λ, which produces

a viscous effect associated with volume change, is very difficult to determine, not even

its sign is known with absolute certainty. Even in compressible flows, the term involving

λ is often negligible; however it can occasionally be important even in nearly incom-

pressible flows and is a matter of controversy. When taken nonzero, the most common

approximation is λ ≈ −2
3µ.

A straightforward substitution of Tij into the momentum conservation equation will

yield the ’NavierStokes equations for a compressible Newtonian fluid’:

ρ
(
∂u
∂t + u∂u

∂x + v ∂u
∂y + w ∂u

∂z

)
= − ∂p

∂x+
∂
∂x

(
2µ∂u

∂x − 2µ
3 ∇ · v

)
+ ∂

∂y

(
µ
(
∂u
∂y + ∂v

∂x

))
+ ∂

∂z

(
µ
(
∂u
∂z + ∂w

∂x

))
+

ρgx

ρ
(
∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z

)
= −∂p

∂y+
∂
∂x

(
µ
(
∂v
∂x + ∂u

∂y

))
+ ∂

∂y

(
2µ∂v

∂y − 2µ
3 ∇ · v

)
+ ∂

∂z

(
µ
(
∂v
∂z + ∂w

∂y

))
+

ρgy

ρ
(
∂w
∂t + u∂w

∂x + v ∂w
∂y + w ∂w

∂z

)
= −∂p

∂z+
∂
∂x

(
µ
(
∂w
∂x + ∂u

∂z

))
+ ∂

∂y

(
µ
(
∂w
∂y + ∂v

∂z

))
+ ∂

∂z

(
2µ∂w

∂z − 2µ
3 ∇ · v

)
+

ρgz
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or, more compactly in vector form,

ρ
(
∂v
∂t + v · ∇v

)
= −∇p+∇ ·

(
µ(∇v + (∇v)T )

)
+∇

(
−2µ

3 ∇ · v
)
+ ρg

where the matrix transpose has been used. Gravity has been accounted for as ”the”

body force, ie f = ρg. The associated mass continuity equation is:

∂ρ
∂t +∇ · (ρv) = 0



2 | Core functionality

This chapter introduces some core concepts of the code and how to use them.

2.1 The ini file

This file provides parameter-value pairs to provide parameters to the simulation. The

file itself uses the ’=’ character to separate parameter from value. Value can be any

string, all following or preceding spaces or tabs are truncated. Only one pair per line

is allowed. The carriage return character(s) must match the ones where you compiled

the simulation. The ’;’ character denotes comments and is similar to C++’s ’//’. An

example:

;

; -------------- Basic Setup --------------

GridFile = ../grid/spiral_16.grid

ThomsonPath = ../grid/thomson

StokesSphere/Type = Box

StokesSphere/Radius = 0.1

@another.ini

To distinct variable names and avoid conflicts, the module name is written in front of

a variable. Including other ini files is possible too with the ’@’ character, followed by

the file name. The inclusion will take place where the ’@’ line is located and all existing

variables will be overwritten (top-down parsing).

The default ini file for the simulation is called ’GaiaS.ini’. This can be overwritten with

the command line switch ’-i <ini-file>’. This (or the default) ini file will be parsed at

8



Chapter 2 Core functionality 9

the beginning. The parsed values can be accessed via a globally available instance called

”ini”. This object has the following methods:

1 static Ini ini;

2

3 class Ini {

4 public:

5 Ini(const char* file);

6

7 // Check if parameter is defined (bail_out = true: exit if not)

8 bool Check(string var_name, bool bail_out = false);

9

10 // Parse & append from a text file, multiple files possible

11 void Load(const char* file);

12

13 // converts automatically to int and double!

14 void SetValue(const char* var_name, const char* var_value);

15

16 // bail_out = true (default) means exit if not found

17 string GetStringValue(const char* var_name, bool bail_out = true);

18 double GetDoubleValue(const char* var_name, bool bail_out = true);

19 int GetIntValue(const char* var_name, bool bail_out = true);

20

21 // 1 / 0 or "yes"/"no"

22 bool GetBoolValue(const char* var_name, bool bail_out = true);

23

24 void Print();

25 };

26

27 Example usage in a module:

28

29 T my_floating_value = ini.GetDoubleValue("MyModule/MyVarName");

2.2 Structure of Classes / Templating

The code does make use of the STL (href?), so basic knowledge about the C++ classes

vector and valarray are necessary. All classes use a template parameter to define the

floating point type. This type is defined in the GaiaS.cpp during instanciation of the

Simulation class and is carried out throughout the other classes.

Furthermore, the source code is implicitly written, meaning that the compiler compiles

a single .o file (except ini), instead of multiple .o files.

2.2.1 The Simulation class

This is the main class, controlling execution, loops, connects to the grid class and builds

/ holds matrices for certain operations like divergence / gradient. It also contains the
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cell array that describes the geometric and Voronoi properties.

2.2.2 The Cell class

The cell class contains information specific to a discrete volumetric element. It is based

on reordered information from the grid’s faces array and contains information and ways

to manipulate boundary conditions.

A typical loop over all cells and their neighbors is illustrated in the smooth() method in

impl simulation.hpp:

1 for (int i = 0; i < cells.size(); i++) {

2 Cell <T> &cell = cells[i]; // shortcut

3 if (cell.isBoundaryCell(true))

4 continue;

5 T sum = 0;

6 T value = 0;

7 for (int j = 0; j < cell.neighbor.size(); j++) {

8 int ne = cell.neighbor[j]; // the neighbor index

9 CellWall<T> &f = grid.faces[cell.walls[j]];

10 value += f.area * scalar[ne];

11 sum += f.area;

12 }

13 value /= sum; // this is now the average value

14 smoothed[i] = central_weight * scalar[i] +

15 (1. - central_weight) * value;

16 }

2.2.3 The Grid class

Contains all information about the grid file and contains the central face and position

array.

Important concepts:

• Nodal positions are grouped into layers (or shells), coming from spherical nature

to easily access outer/ innermost shells. In general this is not necessary, the whole

domain can be just one shell. However, there has to be an inner / outer shell

containing only boundary nodes, so a minimum of three shells must exist. See

grid.n inner and grid.n outer.

• The grid is storing nodal positions, face information and Delaunay triangulation

information. (it does not triangulate, the grid generator does that)
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2.2.4 The CellWall class

Because these faces are Voronoi faces, they are always perpendicular and always midway

to the two parting nodes. The problem is they can be shifted, this is why the center

position is not exactly between n1 and n2.

The important properties of the CellWall class:

1 template<typename T>

2 class CellWall { // also called face

3 public:

4 int neighbor1, neighbor2; // the nodes it divides

5 int index; // in the face array

6

7 vector<int> vvert_indices; // indices of vverts

8 Point<T> normal; // normalized vector pointing from n1 to n2

9 Point<T> center; // center of face

10 InterpolationEntry center_composition;

11 InterpolationEntry normal_plus;

12 InterpolationEntry normal_minus;

13 T area;

14 T distance; // between n1 and n2

15 T s_distance; // discretization star distance

16 bool is_open; // happens on outer faces

17 };

2.3 Internal Loops - Outer Iterations, Time-steps

Running the simulation consists of two nested loops. The outermost loop is the time-

stepping loop that advances time and determines the next step width (delta-time). It

finishes the simulation if a desired count of steps or time is reached. The limit to this

iteration is MaxSteps or MaxTime, whatever happens first.

The next loop within the time-loop is called the outer-iteration. This loop couples non-

linear effects like temperature, non-Newtonian viscosities or under-relaxed momentum

solutions. It is controlled by the velocity difference between the previous outer iteration.

If the difference vanishes or a max iteration count is reached, the outer loop ends and the

time-step is done. The relative tolerance is set by ConvVelRTol, the according absolute

limit is ConvVelATol. The iteration limit is controlled by IterLimitOuter.

The outer loop calls possible energy modules. These modules have the possibility to

alter the temperature / buoyancy field. It is possible to react purely on the temperature

residuals instead of velocity. If this is desired, the parameters ConvTempRTol and

ConvTempATol are equivalent in functionality. If either one exists, the velocity residuals

are ignored!
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The Debug parameter controls the output on the console: 0 = output every time step,

1 = output every outer iteration, 2 = output residual after 100 iterations (with timing),

3 = show all iterations of matrix solvers.

2.3.1 The Stokes solver

The momentum matrix contains the velocity and pressure, making it a huge matrix

and a saddle point problem. The precision (relative residual drop) of the momentum

matrix-solver can be adjusted by RTolMM. The limit of solver iterations is determined

by the parameter MMSolverIts. The type of solver can be altered by MMSolver, with

its default type is BICGSL, check Simulation::Init() for available alternatives.

The equation for pressure is multiplied with the viscosity to ensure convergence for

iterative solvers. You can multiply all equations for pressure with a constant without

altering the theoretical result. However, this does alter the residuum for iterative solvers,

shifting weight from the accuracy of momentum towards mass conservation and vice

versa. The factor can be adjusted with the Penalty parameter (default 1). Lowering

this value can cause fewer iteration at the cost of a worse mass-conservation. The total

precision is nevertheless altered by RTolMM, controlling mass and momentum precision.

2.3.2 Under-relaxation

To speed up convergence for steady-state problems or to couple in non-linear effects it

is possible to employ under-relaxation for only velocity. The method is similar to (ref

Ferziger p112) and allows velocity to change only a fraction α, or urf mm (n is the outer

iteration, φ can be any velocity component):

φn = φn−1 + α(φnew − φn−1)

Leading from Ax = b to:

(
α

diag(A)
I
)
Ax = b+

1− α

α
diag(A)xn−1

This method can only be employed with velocity as the main diagonal for pressure

is zero. The result of under-relaxation has dramatic influence on the convergence of

iterative solvers, but because the result is only a fraction of the true result it needs to

be iterated (outer-iterations, control with ConvVelRTol) until convergence is reached.

A few important things about the nature of α:
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• For a purely linear problem, it is always faster to use α = 1 than α < 1 and iterate

to achieve the same result.

• A value of α < 1 will keep the iterations needed to achieve convergence roughly

constant for various resolutions. However, the result of a single solve will be

different (smaller).

• To achieve the same result on a different resolution for a specific α, a scaling is

required depending on the number of cells.

• Under-relaxation is especially useful if a (quasi-) steady-state solution is sought.

To do so, limit the outer iterations to one by setting IterLimitOuter=1 and

urf mm=0.99. The time accuracy of intermediate solutions is now wrong but the

steady state will be correct. It is often useful to start in this mode and then restart

with a different α or urf mm.

• The accuracy of mass conservation (∇·u = 0) is independent of α and only depends

on RTolMM and Penalty.

2.4 Time stepping

Ho to advance a scalar field like temperature in time is up to the modules that handle

it, in case of finite-Pr convection, velocity is advected with first-order implicit Euler

schema. Nonetheless the simulation has to decide how quickly to advance in time.

There are several mechanisms:

• Fixed time-step: TSType=FIX, TSFactor=<desired TS>

• Courant factor: TSType=COURANT, TSFactor=<desired multiplicator>

The Courant criteria defines that no theoretical particle could cross more than the

smallest cell in the simulation for the current velocity field. A factor of 0.5 would

double that space, therefore allowing a time step twice as big as with a factor of

1.

• Delta factor: TSType=DELTA, TSFactor=<desired multiplicator>

The next time step is related to the velocity residual of the last time step and the

first result of the outer iteration (first velocity residual output). If a simulation

reaches a steady state, the time steps increase dramatically because the velocity

does not change anymore.

Further control parameters are:
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• MaxDT: Absolute upper limit of the time-step

• InitialDT: Always the initial time step, also for restarts.

• ReduceTimeSteps (boolean): If the outer iteration limit was hit, reduce the

next time step.

The simulation does also limit the next time-step increase; the maximal increase is fixed

to a factor of two. This is valid for fixed DT as well, the simulation will always start

with the initial DT and double it until TSFactor is reached.

2.5 Output files

Output files are binary or ASCII files containing the contents of arbitrary fields. They

are written to the current directory or one that is specified with OutputPath and have

the format of PX OUT <CaseID> <time step>. All fields are gathered first in case of

parallel execution, so there is no difference between single-thread and MPI versions.

2.5.1 Control

The output files are either written every OutputIter iterations or, in case OutputTime

is greater than zero, at the iteration that matches that time fraction closest. For debug

reasons it is often helpful to generate an output file programatically, which can be done

by simply calling produce output(). The OuterIterationOutput module demonstrates

this feature.

2.5.2 Field Codes

Field codes are case sensitive single character identifiers for scalar, vector or arbitrary

fields. Modules can use these codes to register their own scalar field. Which fields will

be written in the output file is determined by OutputType. The following codes are

reserved by the core:

• T: Temperature

• P: Pressure

• V: Viscosity

• v: Velocity
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• S: Strain rate

• D: Viscous dissipation

• I: Ini-file contents

2.5.3 Format

The output format can be either binary or ASCII. Binary has, besides the precision,

more advantages as data does not neet to be copied or processed. Especially when

running in parallel, it is highly recommended to use binary output. The controlling

parameter is OutputFormat=BIN/ASCII.

The binary file format follows the endianess of your system. The structure looks like

this:

6 characters: "GP2OUT"

1 int: length of following string (N)

N characters: full path to grid file, not null terminated

1 double: The current time for this time step

REPEAT

1 character: field code (FC)

1 int: value count N

N doubles: The associated data (always doubles)

UNTIL FC= ’I’

All parameters, as key=value(return) pairs, until end of file

For ASCII output, the first line is a headline containing each field code, with the

first three being the node coordinates (X Y Z). After that the desired fields from

OutputType appear on one line per node.

2.6 Restarts

Restarts depend on PX SNAP <CaseID> <rank> files. The simulation produces them

every SnapshotIter iterations. They contain all fields and the current status, almost

like in the output file, but also storing internal fields and does not gather, so each

thread (rank) gets a separate file. Optionally, the path for those can be changed with

SnapshotPath.
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If you want to restart, simply set Restart to yes. Remember that the CaseID, grid

file and CPU count must match.

Internally, the simulation starts normally, including the execution of all init modules,

but afterwards overwrites all fields.

2.7 Matrix and Solvers

2.7.1 Matrix storage

All matrices are stored in the compressed-sparse-row (CSR) format. The public class

definition looks like:
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1 template<typename T>

2 class HBMat {

3

4 public:

5

6 bool first_build;

7 bool store_ap;

8 bool rebuild;

9 vector<T> values;

10 vector<int> Ap_pos;

11 vector<int> col_indices;

12 vector<int> row_ptr;

13

14 int current_row;

15

16 int m, n, nnz;

17

18 HBMat(bool store_ap = false, int m = 0, int n = 0, int nnz = 0);

19 void begin_setup();

20 void end_setup();

21 void start_new_row();

22 void end_row();

23

24 // Elements must come sorted

25 void insert_element_fast(int col, T elem);

26 unsigned int get_validx(int row, int col);

27 void add_element(int col, T value); // mat[current_row, col] += val

28 void sanity_check();

29 void reset_ap(valarray<T> &scalar); // replaces all Ap’s

30 void reset_ap(int row, T value);

31 void add_ap(int row, T value);

32 T get_ap(int row);

33 void mul_ap(int row, T value);

34 void extract_ap(valarray<T> &scalar);

35 T getPerformance(); // return gflops for local matrix

36 void mul(const valarray<T> &x, valarray<T> &result);

37 HBMat transposed(); // does not work in parallel

38 HBMat transposedF(); // Fast version of transposed(), requires twice mem

39 void print();

40 void print(string fname);

41 // can be read with matlab’s spconvert(), b and x vectors are written in b.txt and x.txt

42 void printMatlab(string fname, valarray<T> &b, valarray<T> &x);

43 void normalize(bool keep_sign);

44 int getNnz();

45 // signals that it is the first build or someone called enableRebuild(). After end_setup = false.

46 bool needsRebuild();

47 // !! This does not mean new coefficient positions may appear or others get removed, its just a signal.

48 void enableRebuild();

49 T getOffDiagonalSum(int row);

50 };

A matrix has to be build row after row, randomly setting (row, col) values is not possible,

but randomly setting col in the currect row is possible. After the first build, the matrix

remembers its structure and consecutive builds will be faster. That also means that
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the structure cannot be enhanced. A ”structure” refers to the position of values (row,

col), not their actual value. However, during build, the columns within a row can be

arbitrary, they don’t have to be sorted. A typical matrix setup looks like:

1 HBMat<T> A(false, 10, 10, 50); // The nnz parameter is a first guess

2 A.begin_setup();

3 for (each row)

4 A.start_new_row();

5 for (some col)

6 A.add_element(col, value);

7 A.end_row();

8 end

9 A.end_setup();

2.7.2 Solvers

Solver classes share a common interface so they can be exchanged / extended easily.

The basic interface looks like this:

1 class MatSolver {

2 MatSolver(Simulation<T> *s);

3 long double dot(valarray<T> a, valarray<T> b);

4 long double norm(valarray<T> a);

5 // This is the method all real solver classes must provide.

6 // = 0 means must overwrite!

7 virtual int solve(HBMat<T> A, valarray<T> x, valarray<T> b,

8 int max_it, T a_tol, T r_tol) = 0;

9 };

To use a solver, create an instance and invoke:

1 valarray<T> x(A.n); // x & b should have the same amount of elements

2 valarray<T> b(A.n); // as the matrix has rows

3 MatSolverBicgs<T> solver(this);

4 int iters = solver.solve(A, x, b, 100, 1e-4);

5 // x now contains solution

To develop a new solver, use the provided norm() and dot() methods of the basic solver

class as they use long double values (also for global MPI ops).

2.7.3 Iterative solvers

The few available iterative solvers mostly do Jacobi preconditioning. It is very important

to not have FixPressure set! This would double the complexity for these kind of

solvers. The available solvers are:
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• MatSolverSteepest: Implementing steepest descent algorithm. Just for reference,

very inefficient.

• MatSolverBicgs (MMSolver = BICGS): Implements the BiCGStab algorithm.

• MatSolverBicgsl (MMSolver = BICGSL): Implements the BiCGStab(l) algorithm.

Control of l with BICGSL/ell. Default l=2.

• MatSolverTfqmr (MMSolver = TFQMR): Implements the transpose-free QMR

algorithm. Similar efficiency to BICGStab but suffers stalling.

• MatSolverJacobi: Implements the Jacobi algorithm. Requires a factor with JacobiFactor.

Cannot be used with zeros in main diagonal.

2.7.4 Solver interfaces to PETSC and CUDA

Two more solver classes simulate an interface to the PETSC and CUDA cusp libraries.

They can be enabled by selecting them via MMSolver = PETSC/CUDA and compiling

the distinct executables via make petsc / cuda. These external packages are not aware

of the employed domain decomposition so they can be only used in a serial fashion. The

executable is usually built with:

make petsc

- or -

make cuda

For the PETSC version, all command line options for PETSC can be used, enabling

the use of MUMPS or similar as direct solvers. For direct solvers it is usually advised

to fix a pressure point via FixPressure = <global cell index>. The use of PETSC’s

iterative solvers is not advised as a single iterate may be slow and suffer from precision

errors. The same is unfortunately true for the CUDA version.

2.8 Modules

Modules are separate classes within separate files in the module directory. They have

access to the Simulation instance and therefore to the Grid instance. Their execution is

triggered by Module Chains that are specified in the ini file.
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2.8.1 Creating a Module

To create a module, go to the modules folder and run the shell script with the final class-

and module name.

cd modules

./create_module PlateTectonics

Now edit the newly created file and add functionality. It is often helpful to see how other

modules interact with the simulation. A module will not be active (i.e. no instance will

exist) if it does not appear in at least one module chain.

The module’s exec method has a string parameter that is the string that you specify after

a module’s name in the chain: Box/Init will call the module Box with param = ”Init”.

This way you can distinguish from what chain the module was called.

By default, each module instance has an empty valarray called ”field”. You can resize /

fill this field (valarray<T>) as you desire; if you want this field in you output-file, you just

need to give it a field-code (see REF). Now, if this character appears in OutputType,

it will be in your output file. Another advantage is that you can easily persist this field

in a snapshot, meaning it will recover after a restart, by modifying the constructor:

1 // replace with unique character if you want "field" to appear in output

2 this->field_id = ’X’;

3 this->in_output = false;

4 this->in_snapshot = false;

2.8.2 Integrating modules - The module chains

A module chain is a class with a list (or chain) of instances of modules. These chains

are executed at specific positions in the loops or at certain events. Within the ini file,

modules with optional parameters (distinguished with a slash) are comma-separated.

An example ini-file line would be:

1 MCInit = Box/Init, InitTempLinear, InitSphHarmonics

This would execute the three modules in that order after initialization, where the first

module is called with the string ”Init” as parameter, similar to a call like:

1 Box::GetCurrentInstance(sim)->exec("Init");

although never use it that way, always check the return of GetCurrentInstance() for

NULL in case there is no instance available.
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The following chains exist in the simulation:

• MCInit: Executed after core initialization, only called once.

• MCOutput: Executed before an output file is written.

• MCPreTS: Executed first within each time step.

• MCPostTS: Executed last within each time step.

• MCEnergy: Executed first for each outer iteration. Supposed to modify tempera-

ture, but not required to.

• MCPostOuter: Executed after each outer iteration.

• MCRheology: Executed every time the simulation is required to update the vis-

cosity field. These modules are supposed to modify viscosity.

• MCPrePressure: Executed first for each inner iteration.

• MCBody: Special : This calls a module’s bodyForce(index) method instead of exec()

to obtain a vector that acts as a body force for the momentum equation. If more

than one module is in that chain, the result is summed.

Important: Each module has a single instance. If you call the same module in different

chains, it will always be the same instance, meaning you can access data you stored in

the class definition from all chains.

2.8.3 Interaction between modules - Providing functionality

Modules like Particles provide a functionality that other modules might want to use.

To access instances of available modules, a convenience static method exists within the

template (older modules don’t have that):

1 StokesSphere<T>* myStokesSphere =

2 StokesSphere<T>::GetCurrentInstance(this->s);

This can be called from any module and would give you access to the functionality

of StokesSphere module. All publicly defined methods are now available, but if the

requested module appears in no module chain, the result is NULL, so always check for

that. Another example from particles:
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1 Particles<T> *part = Particles<T>::GetCurrentInstance(this->s);

2 if (part == NULL) {

3 cerr << "No particles found. Enable first!\n";

4 exit(23);

5 }

If a module wants to provide functionality to other modules, it is indicated in the

’Provides’ section in chapter 4.

2.9 Boundary Conditions

Two default boundary conditions (BCs) exist that are automatically linked to the

first shell (inner / bottom boundary condition) and to the last shell (outer / top

boundary condition). Their default behavior can be controlled with the parameters

BCBottomVisc and BCTopVisc. The viscosity at those boundaries can be either zero

for free-slip or ”inf” for no-slip. Intermediate values are not possible yet.

The BC behavior for energy is controlled with the BCBottomHFlow / BCBottomHValue

resp. BCTopHFlow / BCTopHValue parameters. ”HFlow” refers to heat flow (yes/no)

and triggers if the HValue is a heat-flow or a fixed temperature value.

Within the code, BCs are defined separately within the BoundaryCondition class. It is

linked to the Cell class that provides an easy management functionality. Generally, one

can check if a cell is a BC and retrieve the information with:

1 if (cell.isBoundaryCell()) {

2 BoundaryCondition<T> *bc = cell.getBC();

3 if (bc->viscosity == 0) // No-slip

4 ...

5 }

The BC class holds the following information:
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1 class BoundaryCondition {

2 public:

3 // by default, create insulating free-slip

4 BoundaryCondition();

5 // this is for internal use and reflects on how many cells this

6 // BC is in use.

7 int count;

8

9 // _only_ Thermal BC, for MM it’s a compute node

10 bool thermalBoundary;

11

12 // value is either fixed temperature or heat flow

13 bool heatFlow; // false means value is fixed-T!

14 T value;

15

16

17 // Momentum related:

18

19 // For in-, out- or shear-flow, this value is non-zero

20 Point<T> velocity;

21

22 // If zero then no-slip, Inf means free-slip.

23 // Intermediates don’t work yet, as it would req. a gradient

24 T viscosity;

25

26 // Convenience instanciation:

27 static BoundaryCondition<T>* InsulatingFreeSlip();

28 static BoundaryCondition<T>* FixedTempFreeSlip(T temp);

29 static BoundaryCondition<T>* InsulatingNoSlip();

30 static BoundaryCondition<T>* FixedTempNoSlip(T temp);

31 };

Setting and removing boundary conditions is handled by the Cell class, please look at

the Box module for a demonstration:

1 BoundaryCondition<T>* sidewallBC = BoundaryCondition<T>::InsulatingFreeSlip();

2 for (int i = g->n_inner; i < g->n_outer; i++) {

3 if (s->cells[i].getVolume() > 0) // Box grids have negative volume on open cells

4 continue;

5 s->cells[i].setBoundaryCondition(sidewallBC, true); // no halo check true here

6 }

7 // Important for parallel runs, always execute after changing BC setup!

8 s->exchange_bc();
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2.10 Parallelism

2.10.1 Compiling and Running

The complete code is makes use of the MPI library to communicate between different

CPUs and thus run in parallel. The default ”make” tries to build the MPI version,

ending with a P, that can be run as follows:

1 mpirun -np 4 ./GaiaP -i GaiaS_blankenbach.ini

The according development packages for your favorite MPI library need to be present

to build the MPI version. The command mpicxx or similar should be present.

2.10.2 Development

To determine the rank and process count, there are two global integers called rank and

cpu count to determine the own process number (rank) amongst all started by MPI

cpu count.

The file impl mpi.hpp contains routines to distribute the grid among different CPUs,

called domain-decomposition. Each process (rank) holds only a portion of the grid. This

portion of the grid is typically surrounded by halo-cells or boundary cells.

Halo cells are cells whose values reside on a different CPU but can be obtained upon

request. At the beginning the grid is divided and distributed. The grid.gross points and

all other grid specific variables reflect only the part of the grid that is local to the rank,

including halo cells! A sum of grid.gross points among all processes would therefore

always lead a greater number than the true amount of all cells. To distinguish halo

cells, the cell class has a boolean property called is halo cell. A more viable variant

is to check for boundary or halo cell together by using cell.isBoundaryCell(true). The

boolean parameter defines if the result should be ”or”ed with the is halo cell property

or not.

The code provides some convenience functions for MPI handling, so you should avoid

using MPI calls directly (this way your code will work in the serial version without

MPI libraries). These set of functions include filling halo cells and computing sums and

norms.
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Figure 2.1: Domain Decomposition

Hint: You usually only need the expensive exchange() call if you compute some kind of

partial derivative like grad / div, but these routines do it already for you. The more you

use these calls, the more inefficient it will be.

• exchange(valarray<T> in, valarray<T> out)

The ”in” array can be the same as ”out”. After calling, the out array will contain

proper values for the halo cells, other values are not affected by this call. The array

size must be a multiple of gross points, enabling the exchange of more than one

value with a single call. To use this, align your data within the array field-by-field

(planar), i.e. [AAA...,BBB....] and not interleaved [ABABAB...].

• exchange(vector<Point<T> > vec)

Same functionality, but with an array of positions / velocities.

• global sum(T local sum)

• global norm(valarray<T> scalar[, T norm])

Takes care of not accounting halo cells when computing.

• global min(T local min)
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• global max(T local max)

Make sure these methods are called on all CPUs, don’t use them within an if statement

that depends on a local value, or your code will block. A common mistake is to use it

with cout:

1 cout << "Mean temperature: " << global_norm(temperature, 1) << endl;

The code above would block as cout is filtered to be executed only on rank 0. The

proper way to do it:

1 T mean_temp = global_norm(temperature, 1);

2 cout << "Mean temperature: " << mean_temp << endl;

2.10.3 Domain Decomposition Cache

To avoid the time and memory consuming decomposition and distribution at each start,

the ini variable DDCache can be used to create cache files for a certain grid and a certain

number of processes.

To create cache files, set DDCache to the desired amount of processes together with

the desired GridFile and run the MPI version explicitly with a single process (-np 1).

Now the cache will be generated and the program will exit. The files will be in the same

folder as the grid file, named DDCACHE GridFile cpu count rank. Remember that for

big grids a lot of memory is required for the decomposition because the whole grid must

be loaded at once at the beginning.

To use the cache, set DDCache to the desired amount of processes or simply set it to

”use”. Now start the simulation as usual with the proper amount of processes.

2.11 All Parameters controlling core functionality

Some parameters (like Advection or InitialModeL) now belong to modules but don’t

have their module prefix. This will hopefully change sometime. Others like DRef or Ra

are in here for generic use, many modules require them although the core does not. If

there is no default for a parameter (”N/A”), you have to specify it within the ini file.
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2.11.1 Simulation control

Debug= N/A Level of verbosity, 0 = min, 5 = max

CaseID= N/A A short string to identify output and snapshot files.

GridFile= N/A Grid file

OutputPath= ./ Pathname for output files

OutputFormat= BIN Output format (ASCII/BIN)

OutputTime= 0 Time interval for output, simulation time

OutputIter= N/A Time step interval for output, simulation time

OutputType= N/A A string with field codes, see output section

UseSnap= N/A Like Restart, but time starts at zero.

MaxTime= 1.2 Maximum scaled time, 0 = endless

InitialDT= N/A Initial time step, regardless of restarts

MaxDT= N/A Maximal time step

TSType= N/A DELTA / FIX / COURANT, see time section

TSFactor= N/A See time section

SnapshotPath= ./ Pathname for snapshot files

SnapTime= 0 Time interval for snapshot output, independent of

SnapshotIter, unit: simulation time

SnapRunTime= 0 Time interval for Snapshot Output, independent of

SnapshotIter, unit: run time (seconds) (???)

SnapshotIter= N/A Time step interval for Snapshot Output
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Restart= N/A Try to load restart files? (yes/no)

RestartFromSnap= 0 ???

RadialSplit= 0 Domain decomposition for spherical grids: how many

divisions radially?

DDCache= 0 Domain decomposition cache value, set to desired

CPU count but let it run with just one to build the

cache, if CPU count matches this number it tries to

use it

MaxSteps= 0 Amount of time steps after simulation ends, 0=end-

less

seed= 17031979 The initial seed for random number generator

Dref= 1 Reference depth

Tref= 1 Reference temperature

2.11.2 Precision

MaxVelocity= 1e90 End simulation if rms-velocity is above that value

(breakdown-indicator)

ReduceTimeSteps= 0 1: reduce timestep if IterLimitOuter reached

IterLimitOuter= 80 Maximum amount of outer iterations

ConvTempATol= 1e-4 Absolute tolerance for temperature residual

ConvTempRTol= 1e-2 Relative tolerance for temperature residual. Careful:

if ConvVelRTol > 0, these limits are ignored.

ConvVelATol= 1e-2 Absolute tolerance for velocity residual

ConvVelRTol= 0 Relative tolerance for velocity residual. 0 = ignore

(use ConvTempR/ATol)
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ConvDivRes= 1e-2 Terminate inner iterations if mean absolute diver-

gence does not lower by more than this value

Advection= 2 Advection scheme: 0 = Upwind, 1 = CDS, 2 =

MUSCL, 3 = Particles (must be setup)

urf mm= 1 Under-relaxation factor for momentum equation

(1>x>0)

RTolMM= 1e-4 Matrix solver relative tolerance for momentum equa-

tion

MMSolver= BICGS Name of solver to use. Choose between SD (steepest

descent), BICGS, TFQMR, CUDA, PETSC. Might

require special compile options.

IniStrainRate= 1e-19 Initial strain rate

ChasteTS= no Don’t let the stokes solver ”remember” anything from

previous TS, pressure and velocity is set to 0. Don’t

do this for finite Prandtl number.

NonNewtonianRheology= no Strain-rate update during outer-iterations?

MaxViscContrast= 1e30 Limit viscosity contrast. Always from lowest viscos-

ity value.

2.11.3 Other

Compressibility= 0 0: Ignore density variations. = 1 includes compress-

ibility for static reference density, = 2 dynamic

PrInverted= 0 For absent thermal convection, this is the Reynolds

number, otherwise 1/Prandtl

Ta= 0 Taylor number

Ra= 1 The bottom-heated Rayleigh number (see module

Boussinesq)

RaQ= 0 The internally-heated Rayleigh number (see module

Boussinesq)
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Di= 0.0 Dissipation number (see module Boussinesq)

InitialTemp= 1.0 Initial value for temperature field

InitialAmp= 0.05 Amplitude for perturbation (see module InitSphHar-

monics)

AmplRScaling= yes ??

InitialModeL= 0 Spherical harmonics L (see module InitSphHarmon-

ics)

InitialModeM= 0 Spherical harmonics M (see module InitSphHarmon-

ics)

InitialModeL2= 0 Spherical harmonics L/M (second disturbance) (see

Module InitSphHarmonics)

InitialModeL3= 0 Spherical harmonics L/M (third disturbance) (see

Module InitSphHarmonics)



3 | Grid

The grid information is stored in a file, usually generated by a grid generator and read

by the Grid class within the simulation. The information consists of positions of the

cells, volumes and Voronoi information such as face areas and neighboring nodes. The

grid has to stored with proper Voronoi information. Some basic grids are available in

the repository under https://svn.dlr.de/Gaia/GaiaS svn/grid/.

3.1 Generators

The 3D spherical shell grid-generator is writrten in C and available at

https://svn.dlr.de/Gaia/GaiaS svn/trunk/c source/gridgen/. It requires a current qhull

library installed and patched. It can create various grids by taking input points on a

unity shell and project them or by using the internal spiral engine to create points.

For 2D spherical or box grids, only IDL generators exist.

3.2 File structure

There are two kinds of grid files the simulation can read: ASCII based (ending with

.grid ascii) and binary (.grid). The endianess of the binary version depends on the

system it was created on, integers have 32bits and doubles 64. The file has the following

structure:

• 3 characters identifying the grid type: currently supported ”BOX” or ”SPH”

• 1 character identifying dimensions: ”3” for 3D, ”2” for 2D

• 5 characters fixed: ”GRID ”

• 1 character identifying binary grids: ”B” for binary, ”A” for ASCII.

• 2 characters as version, currently ”04”

31

https://svn.dlr.de/Gaia/GaiaS_svn/grid/
https://svn.dlr.de/Gaia/GaiaS_svn/trunk/c_source/gridgen/
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• 1 double inner radius

• 1 double outer radius

• 1 double resolution (should be roughly the mean distance between cells)

• 1 int amount of shells (radial discretization or y resolution for box)

• For each shell (n total = 0):

– 1 int (=n) amount of locations for that shell; n total += n

– n * 3 doubles expressing x, y and z locations of cell. Z is always present, even

for 2D cases!

• 1 int (=n) amount of Voronoi vertices (vverts)

• n * 3 doubles location of vertices

• 1 int (=n) amount of surface areas for each cell (n should be equal to n total)

• n total doubles surfaces (sum of face areas for each closed cell)

• 1 int (=n) amount of volumes for each cell (n should be equal to n total)

• n total doubles volumes

• 1 int (=n) amount of tetrahedra (from Delaunay triangulation)

• n * 4 int indices for locations connecting a single tetrahedron

• 1 int (=n) amount of faces

• For each face (polygon dividing two cells):

– 1 int neighbor index 1 (from locations array)

– 1 int neighbor index 2 (from locations array)

– 1 double face area

– 1 int amount of vverts connecting the polygon (=n v)

– n v int indices to vvert



4 | Modules

This chapter describes the functionality of available modules. Look at section 2.4 on

how modules work.

4.1 Energy

4.1.1 [Boussinesq] (Extended) Boussinesq energy module and body

force

Field-Code In-Snap Body-Force File Name

W No Yes Boussinesq.hpp

33



Chapter 4 Modules 34

Description: This module modifies temperature according to the energy equation

and provides a radial acting body force. The energy equation is capable

of handling standard Boussinesq, extended Boussinesq and (T)ALA.

TODO: Write up how total temperature is defined. The equation for

standard B. is:

∂T

∂t
+ ~u · ∇T = ∇2T +

RaQ
Ra

(4.1)

Only the CDS advection guarantees energy balance, but creates wiggles

if the local Peclet number becomes too high.

To change various compressibility approximations use (MCBody never

changes):

• Std. Boussinesq:

Compressibility = 0 ;(default)

MCEnergy = Boussinesq

• Ext. Boussinesq:

Compressibility = 0 ;(default)

MCEnergy = Boussinesq/Compress

• TALA:

Compressibility = 1

MCEnergy = Boussinesq/Compress

MCInit = InitRefState

• ALA:

Compressibility = 1

MCEnergy = Boussinesq/Compress

MCInit = InitRefState

Boussinesq/ALA = yes

Depends on: [Particles, InitRefState]
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Variables used

(incl. defaults):

Advection = 0 (upwind)

Advection = 1 (CDS - default)

Advection = 2 (MUSCL)

Advection = 3 (particles - set up particle chains!)

Boussinesq/ALA = no

Di = 0 (Dissipation number)

Ra = reqd. (Rayleigh number)

RaQ = 0 (Internally heated Rayleigh number)

T0 = 0 (Non-dimensional surface temperature)

Provides: Body force

::update phi(valarray); Calculates the phi field for MUSCL advection

’W’ field for output providing work-done

Howto: MCEnergy = Boussinesq[/Compress]

MCBody = Boussinesq

Initial: christian.huettig@nianet.org / Jan 31 2012

4.1.2 [GeoFlow] Body force module for GeoFlow experiments

Field-Code In-Snap Body-Force File Name

- No Yes GeoFlow.hpp

Description: This module provides a radial acting body force purely based on the

temperature, radius and the Rayleigh number to simulate GeoFlow

ISS-conditions. Additionally an unidirectional body force can be

applied to simulate Earth-lab-conditions.

http://www.eusoc.upm.es/en/e-usoc/spacemission/

geoflow.html

Depends on: -

Variables used

(incl. defaults):

GeoFlow/Ra z = 0.0 //Rayleigh number for the unidirectional buoy-

ancy force (for experiments on Earth)

GeoFlow/radius power = -5.0 //power of the radius multiplying

the buoyancy force (for ISS experiments Rar−5Ter)

http://www.eusoc.upm.es/en/e-usoc/spacemission/geoflow.html
http://www.eusoc.upm.es/en/e-usoc/spacemission/geoflow.html
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Provides: Body force

Howto: MCInit = GeoFlow/Init

MCBody = GeoFlow

MCEnergy = Boussinesq

use no-slip boundary conditions to simulate GeoFlow parameters

Initial: ina05ro@yahoo.com / Mar 19 2013

4.1.3 [Composition] Eularian transport of a chemical

Field-Code In-Snap Body-Force File Name

C yes yes Composition.hpp

Description: Solves advection of a distinct chemical field that counteracts buoyancy

(different density) with a compositional Rayleigh number. TODO:

write formula

Depends on: -

Variables used

(incl. defaults):

Composition/RaC = reqd.

Composition/LewisNumber = not used, implicit advection pro-

vides diffusion anyway

Provides: compositional field in field property.

Howto: MCInit=Composition/Init

MCEnergy=Boussinesq, Composition/Solve

MCBody = Boussinesq,...,Composition

Initial: christian.huettig@dlr.de / 28.6.11
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4.2 Rheology

4.2.1 [ArrheniusViscosity] Arrhenius viscosity with variable N

Field-Code In-Snap Body-Force File Name

- - - RH ArrheniusViscosity.hpp

Description: Updates the viscosity field of the simulation according to the

Arrhenius-law:

η = ε
N−1
N

ref ε
1−N
N exp

(
E + V d

N(T + T0)
−

E + V Dref

N(Tref + T0)

)
(4.2)

All variables are non-dimensionalized. E activation energy; V activa-

tion volume; d depth; N creep-exponent; Dref reference depth; Tref

reference temperature; T temperature; T0 surface temperature; εref

reference strain-rate; ε strain-rate;

Depends on: -

Variables used

(incl. defaults):

ArrheniusViscosity/E = reqd. ; Activation energy

ArrheniusViscosity/V = reqd. ; Activation volume

ArrheniusViscosity/N = reqd. ; N=0 diffusion creep; N=3 dislo-

cation creep.

Also needed: T0, Tref, Dref, EpsRef

Provides: -

Howto: MCRheology = ArrheniusViscosity

Initial: ?

4.2.2 [FKViscosity] Frank-Kamenetskii viscosity law

Field-Code In-Snap Body-Force File Name

- - - RH FKViscosity.hpp
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Description: Updates the viscosity field of the simulation according to the FK-law:

η = exp (log∆ηT (Tref − T ) + log∆ηP (d−Dref )) (4.3)

All variables are non-dimensionalized. d depth; Dref reference depth;

Tref reference temperature; T temperature;∆ηT viscosity contrast due

to temperature;∆ηP viscosity contrast due to pressure

Depends on: -

Variables used

(incl. defaults):

FKViscosity/ViscT= reqd., equivalent to ∆ηT

FKViscosity/ViscP= reqd., equivalent to ∆ηP

Also needed: Tref, Dref

Provides: -

Howto: MCRheology= FKViscosity

Initial: ?

4.3 Particles

4.3.1 [Particles] Particle-in-cell implementation (PIC)

Field-Code In-Snap Body-Force File Name

p yes no ParticleHelper.hpp
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Description: This module attempts to provide an infrastructure to track different

materials, including feedback to the momentum solver. The parti-

cles are mass-less, meaning they are not necessarily conserving mass if

treated as such.

Initialization is either random to match desired cell density

or regular gridded in case of BOX grids. The advection is

done using a fourth order Runge-Kutta scheme, see Fig. 4.1.

Figure 4.1: Runge-Kutta 4th order advection

Depends on: SupportGrid module

Variables used

(incl. defaults):

Particles/Density = 20; desired particles per cell

Particles/InvDistPower = 1;

Provides: The following commands are available for other modules or per call in

a module chain:

• Init

Howto: Howto

Initial: submitted-by-when
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4.4 Output

4.4.1 [BodyForce] Body force output module

Field-Code In-Snap Body-Force File Name

B No No BodyForce.hpp

Description: This module outputs the body force vector or if specified with /S, a

scalar containing the length of the body force vector for each cell.

Depends on: -

Variables used

(incl. defaults):

-

Provides: -

Howto: MCOutput= BodyForce[/S]

OutputType = B

Initial: christian.huettig@nianet.org / 14.03.2012

4.4.2 [Divergence] Divergence

Field-Code In-Snap Body-Force File Name

U no no Divergence.hpp

Description: Calculates the divergence of the current velocity field.

Depends on: -

Variables used

(incl. defaults):

-

Provides: -
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Howto: MCOutput= Divergence

OutputType = U

Initial: christian.huettig@nianet.org / 11/2011

4.5 Benchmark

4.5.1 [CavityFlow] Cavity flow

Field-Code In-Snap Body-Force File Name

- No No CavityFlow.hpp

Description: Reproduces the cavity flow benchmark in a box. Sets up boundary

conditions for a 1x1 box according to benchmark: NoSlip everywhere,

velocity on top u = 1, v= 0. Adjust PrInverted as Reynolds number.

Depends on: -

Variables used

(incl. defaults):

Box

Provides: -

Howto: See GaiaS cavity.ini for details.

Initial: christian.huettig@dlr.de / 7th March 2013

4.5.2 [Keken] Rayleigh-Taylor instability benchmark

Field-Code In-Snap Body-Force File Name

C yes yes Keken.hpp
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Description: Reproduces Keken et. al. benchmark cases. Title: A comparison of

methods for the modeling of thermochemical convection. JGR 1997

ATTENTION: special box grids needed with aspect ratio (width) of

0.9142.

Depends on: Particles

Variables used

(incl. defaults):

Keken/RaC = reqd.; Body force multiplier, just for time scaling.

Keken/Viscosity = reqd.; The viscosity of the chemical. Every-

thing else has η = 1.

Provides: -

Howto: See GaiaS keken.ini !

Initial: christian.huettig@dlr.de Sept 2013

4.6 Initial Condition

4.6.1 [InitRefState] Reference density

Field-Code In-Snap Body-Force File Name

- - - InitRefState.hpp

Description: Initializes the refdensity and reftemp array in Simulation. Supports

Adams-Williamson profile:

ρref = exp (Di d) Tref = T0 exp (Di d) (4.4)

Depends on: -

Variables used

(incl. defaults):

Di = 0; Dissipation number

T0 = 0; Surface temperature
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Provides: -

Howto: MCInit = InitRefState/AdamsWilliamson

Initial: christian.huettig@dlr.de / 15.3.13

4.6.2 [InitSphHarmonics] Spherical harmonic (3D) or sine (2D) dis-

tortion on temperature

Field-Code In-Snap Body-Force File Name

- - - InitSphHarmonics.hpp

Description: Adds [multiple] spherical harmonic (3D) or sine (2D) fields to current

temperature field. The mode and amplitude is determined by variables

and reaches its peak at mid-depth, damped by a half sine across depth.

Depends on: -

Variables used

(incl. defaults):

InitialModeL[2,3,4,...] = 0; L or frequency for sine in 2D

InitialModeM[2,3,4,...] = 0; M, no use in 2D

InitialAmp[2,3,4,...] = 0; Amplitude

Provides: void sph_harmonic_distortion(valarray<T> &scalar, T amplitude, T l, T

m, T power = 1.);

static double sph_harm(double theta, double phi, int l, int m);

static inline int factorial(int n);

static double legendre(int l, int m, double x);
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Howto: MCInit=InitTempLinear, InitSphHarmonics

To trigger cubical mode (6 plumes in 3D):

InitialModeL = 4

InitialModeM = 0

InitialAmp = 0.15

InitialModeL2 = 4

InitialModeM2 = 4

InitialAmp2 = 0.15

To trigger tetrahedral mode (4 plumes in 3D):

InitialModeL = 3

InitialModeM = 2

InitialAmp = 0.15

Initial: from v1

4.6.3 [InitTempLinear] Linear temperature profile with boundary lay-

ers

Field-Code In-Snap Body-Force File Name

- - - InitTempLinear.hpp

Description: Sets up initial temperature condition to a linear profile depending on

depth. Optional provide linear boundary layers. Grid differentiation

for spherical shell and full sphere is respected.

Depends on: -

Variables used

(incl. defaults):

InitialTemp = 1; Maximal (bottom) temperature

ITL/TopLayerDepth = 0; depth of top layer

ITL/TopLayerMax = 0; temperature at TopLayerDepth

ITL/BottomLayerDepth = 1; depth of bottom layer

ITL/BottomLayerMin = 1; temperature at BottomLayerDepth

The temperature between TopLayerDepth and BottomLayerDepth is

linearly interpolated.
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Provides: -

Howto: MCInit=InitTempLinear

Initial: from v1

4.7 Other

4.7.1 [Box] Box grid loader

Field-Code In-Snap Body-Force File Name

- No No Box.hpp

Description: Provides the ability to load 2D box grids. Also implements domain

decomposition and replaces the sim-¿grid instance with a RegionalGrid

class. The radius array becomes one, the shell radius gets the y value of

the first cell in a row. Boundary conditions are properly implemented.

Depends on: -

Variables used

(incl. defaults):

-

Provides: -

Howto: MCInit = Box/Init

Some box2 * grid file.

To access box properties:

//within another module:

if (Box::GetCurrentInstance(this->s) != NULL) {
RegionalGrid<T> *g = static cast<RegionalGrid<T> *>(s->grid);

cout << g->length x << ” ” << g->length y << endl; }
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Initial: ported by christian.huettig@nianet.org / 2/2/12, originally imple-

mented by Lena Noack lena.noack@dlr.de * Update to v1-functionality:

lena.noack@dlr.de / 08.02.12

4.7.2 [InitPrintGaiaS] Outputs ini-file contents

Field-Code In-Snap Body-Force File Name

- - - InitPrintGaiaS.hpp

Description: Outputs ini-file contents as it was parsed by all four parsers (bool, int,

double, string). Mainly for debug.

Depends on: -

Variables used

(incl. defaults):

-

Provides: -

Howto: -

Initial: ?



5 | Post-processing

5.1 IDL

5.1.1 NG-suite

5.2 Paraview

5.3 Gnuplot
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A | An Appendix

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at pulvinar nisi.

Phasellus hendrerit, diam placerat interdum iaculis, mauris justo cursus risus, in viverra

purus eros at ligula. Ut metus justo, consequat a tristique posuere, laoreet nec nibh.

Etiam et scelerisque mauris. Phasellus vel massa magna. Ut non neque id tortor pharetra

bibendum vitae sit amet nisi. Duis nec quam quam, sed euismod justo. Pellentesque eu

tellus vitae ante tempus malesuada. Nunc accumsan, quam in congue consequat, lectus

lectus dapibus erat, id aliquet urna neque at massa. Nulla facilisi. Morbi ullamcorper

eleifend posuere. Donec libero leo, faucibus nec bibendum at, mattis et urna. Proin

consectetur, nunc ut imperdiet lobortis, magna neque tincidunt lectus, id iaculis nisi

justo id nibh. Pellentesque vel sem in erat vulputate faucibus molestie ut lorem.

Quisque tristique urna in lorem laoreet at laoreet quam congue. Donec dolor turpis,

blandit non imperdiet aliquet, blandit et felis. In lorem nisi, pretium sit amet vestibulum

sed, tempus et sem. Proin non ante turpis. Nulla imperdiet fringilla convallis. Vivamus

vel bibendum nisl. Pellentesque justo lectus, molestie vel luctus sed, lobortis in libero.

Nulla facilisi. Aliquam erat volutpat. Suspendisse vitae nunc nunc. Sed aliquet est

suscipit sapien rhoncus non adipiscing nibh consequat. Aliquam metus urna, faucibus

eu vulputate non, luctus eu justo.

Donec urna leo, vulputate vitae porta eu, vehicula blandit libero. Phasellus eget massa

et leo condimentum mollis. Nullam molestie, justo at pellentesque vulputate, sapien

velit ornare diam, nec gravida lacus augue non diam. Integer mattis lacus id libero

ultrices sit amet mollis neque molestie. Integer ut leo eget mi volutpat congue. Vivamus

sodales, turpis id venenatis placerat, tellus purus adipiscing magna, eu aliquam nibh

dolor id nibh. Pellentesque habitant morbi tristique senectus et netus et malesuada

fames ac turpis egestas. Sed cursus convallis quam nec vehicula. Sed vulputate neque

eget odio fringilla ac sodales urna feugiat.

Phasellus nisi quam, volutpat non ullamcorper eget, congue fringilla leo. Cras et erat

et nibh placerat commodo id ornare est. Nulla facilisi. Aenean pulvinar scelerisque eros
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eget interdum. Nunc pulvinar magna ut felis varius in hendrerit dolor accumsan. Nunc

pellentesque magna quis magna bibendum non laoreet erat tincidunt. Nulla facilisi.

Duis eget massa sem, gravida interdum ipsum. Nulla nunc nisl, hendrerit sit amet

commodo vel, varius id tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nunc ac dolor est. Suspendisse ultrices tincidunt metus eget accumsan. Nullam facilisis,

justo vitae convallis sollicitudin, eros augue malesuada metus, nec sagittis diam nibh ut

sapien. Duis blandit lectus vitae lorem aliquam nec euismod nisi volutpat. Vestibulum

ornare dictum tortor, at faucibus justo tempor non. Nulla facilisi. Cras non massa nunc,

eget euismod purus. Nunc metus ipsum, euismod a consectetur vel, hendrerit nec nunc.
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Restart, 16, 28
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SnapRunTime, 27

SnapshotIter, 15, 27
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SnapTime, 27
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Tref, 28, 37, 38

TSFactor, 13, 27
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BICGSL/ell, 19
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FKViscosity

FKViscosity/ViscP, 38
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ITL/BottomLayerDepth, 44
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